A Refined Classification Method for Transformer Fault Diagnosis
نویسندگان
چکیده
منابع مشابه
Transformer fault diagnosis using continuous sparse autoencoder.
This paper proposes a novel continuous sparse autoencoder (CSAE) which can be used in unsupervised feature learning. The CSAE adds Gaussian stochastic unit into activation function to extract features of nonlinear data. In this paper, CSAE is applied to solve the problem of transformer fault recognition. Firstly, based on dissolved gas analysis method, IEC three ratios are calculated by the con...
متن کاملClassification Method for Fault Diagnosis in Networked Cim Systems
A method to support fault diagnosis in networked discrete events systems is presented. The method combines the abstraction and condensation of data with recognition of anomalies. The method and implementing tool have been successfully used at CIM factories in some European countries. Copyright © 2001 IFAC
متن کاملStudy on Transformer Fault Diagnosis Based on Dynamic Fault Tree
In this paper, according to theoretical diagnosis of fault tree, the author builds a diagnosis model based on dynamic fault tree and illustrates the model’s construction method and diagnosis logic in detail. According to case analysis, compared with conventional fault tree diagnosis, the above-mentioned method is advanced in fault-tolerant ability. Plus, the diagnosis results record some interm...
متن کاملFuzzy Fault Tree Analysis for Fault Diagnosis of Cannula Fault in Power Transformer
Being one of the most expensive components of an electrical power plant, the failures of a power transformer can result in serious power system issues. So fault diagnosis for power transformer is highly important to ensure an uninterrupted power supply. Due to information transmission mistakes as well as arisen errors while processing data in surveying and monitoring state information of transf...
متن کاملA Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2019
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1302/2/022096